Monday, June 14, 2010

What is the relation link between RXQUAL& FER?

Q: What is the relation link between RXQUAL& FER?

Ans: The relation of downlink FER and RXQUAL was measured during a FH trial. The relation is clearly different in the hopping case compared to the non-hopping case. The distributions of FER in each RXQUAL class are presented in Figure 71 and Figure 72. One clear observation can be made; in the non-hopping case there are significant amount of samples indicating deteriorated quality (FER>10%) in RXQUAL class 5 while in the hopping case the significant quality deterioration (FER>10%) happens in RXQUAL class 6. Thus, it may be concluded that in the frequency hopping networks significant quality deterioration starts at RXQUAL class 6 while in non-hopping network this happens at RXQUAL class 5.
This improvement of FER means that the higher RXQUAL values may be allowed in a frequency hopping network. RXQUAL thresholds are used in the handover and power control decisions. Because of the improvement in the relative reception performance on the RXQUAL classes 4-6, the RXQUAL thresholds affecting handover and power control decisions should be set higher in a network using frequency hopping network. In a frequency hopping network RXQUAL classes 0-5 are indicating good quality.


Typically, the share of the RXQUAL classes 6 and 7 may increase after FH is switched on, even if no other changes have been made. This may seem to be surprising since it is expected that frequency hopping improves the network quality. However, in most cases the quality is actually improved, but the improvement is more visible in the call success ratio. The improved tolerance against interference and low field strength in FH network means that it is less likely that the decoding of SACCH frames fails causing increment in the radio link timeout counter. Thus, it is less likely that a call is dropped because of the radio link timeout. Instead, the calls generating high RXQUAL samples tend to stay on. This may lead to increase in the share of RXQUAL 6-7. However, at the same time the call success rate is significantly improved.

In the Figure 73, there are presented some trial results of a DL RXQUAL distribution with different frequency allocation reuse patterns. As can be seen from the figures, the tighter the reuse becomes, the less samples fall in quality class 0 and more samples fall in quality classes 1-6. There’s bigger difference in downlink than in uplink direction.

This difference is a consequence of interference and frequency diversities that affect the frequency hopping network. Because of these effects, the interference or low signal strength tend to occur randomly, while in a non-hopping network it is probable that interference or low field strength will affect several consecutive bursts making it harder for the error correction to actually correct errors. The successful error correction leads to less erased frames and thus improves the FER.

1 comment:

  1. Superb, what a web site it is! This website gives useful information to
    us, keep it up.

    My webpage bmi index chart

    ReplyDelete

Popular Posts